Regular graphs with small second largest eigenvalue

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Graphs with small second largest Laplacian eigenvalue

Let L(G) be the Laplacian matrix of G. In this paper, we characterize all of the connected graphs with second largest Laplacian eigenvalue no more than l; where l . = 3.2470 is the largest root of the equation μ3 − 5μ2 + 6μ − 1 = 0. Moreover, this result is used to characterize all connected graphs with second largest Laplacian eigenvalue no more than three. © 2013 Elsevier Ltd. All rights rese...

متن کامل

Spectral Characterization of Graphs with Small Second Largest Laplacian Eigenvalue

The family G of connected graphs with second largest Laplacian eigenvalue at most θ, where θ = 3.2470 is the largest root of the equation μ−5μ+6μ−1 = 0, is characterized by Wu, Yu and Shu [Y.R. Wu, G.L. Yu and J.L. Shu, Graphs with small second largest Laplacian eigenvalue, European J. Combin. 36 (2014) 190–197]. Let G(a, b, c, d) be a graph with order n = 2a + b + 2c + 3d + 1 that consists of ...

متن کامل

Some Graphs with Small Second Eigenvalue

where n = |V |. Let G = (V,E) be a 3-regular hypergraph; i.e. E is a subset of subsets of V of size 3. We consider the space, L2(V ), of real valued functions on V with the usual inner product; let e1, . . . , en be the standard basis for L2(V ), where ei takes the value 1 on the i-th vertex of V and 0 elsewhere. It is natural to construct from G a trilinear form, that is a map from τ , mapping...

متن کامل

A note on the largest eigenvalue of non-regular graphs

The spectral radius of connected non-regular graphs is considered. Let λ1 be the largest eigenvalue of the adjacency matrix of a graph G on n vertices with maximum degree ∆. By studying the λ1-extremal graphs, it is proved that if G is non-regular and connected, then ∆− λ1 > ∆+ 1 n(3n+∆− 8) . This improves the recent results by B.L. Liu et al. AMS subject classifications. 05C50, 15A48.

متن کامل

On the largest eigenvalue of non-regular graphs

We study the spectral radius of connected non-regular graphs. Let λ1(n,Δ) be the maximum spectral radius among all connected non-regular graphs with n vertices and maximum degree Δ. We prove that Δ− λ1(n,Δ)=Θ(Δ/n). This improves two recent results by Stevanović and Zhang, respectively. © 2007 Elsevier Inc. All rights reserved.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applicable Analysis and Discrete Mathematics

سال: 2013

ISSN: 1452-8630,2406-100X

DOI: 10.2298/aadm130710013k